أنواع خوارزميات التعلم الآلي:
في عالم الذكاء
الاصطناعي المتنامي، تلعب خوارزميات التعلم الآلي دورًا محوريًا في اكتشاف الأنماط
واتخاذ القرارات بناءً على البيانات. لكن مع تطور مجال التعلم الآلي، تطورت معه
مجموعة متنوعة من الخوارزميات، كل منها مصمم لحل أنواع مختلفة من المشاكل. دعونا
نستكشف بعض الأنواع الرئيسية وخوارزميات التعلم الآلي والمشاكل التي يمكنها
معالجتها في العالم الحقيقي.
١. خوارزميات التصنيف ((Classification
Algorithms:
تُستخدم خوارزميات التصنيف لتصنيف البيانات إلى فئات أو أقسام محددة مسبقًا. تحلل هذه الخوارزميات البيانات المُدخلة وتسند تصنيفات أو تسميات للبيانات الجديدة استنادًا إلى الأنماط التي تعلمتها من البيانات التدريبية. من الأمثلة على ذلك:
· الانحدار اللوجستي Logistic
Regression
· الأشجار القرارية Decision Trees
· آلة الدعم النوعي ((SVM Support Vector Machines
· الغابات العشوائية Random Forest
التطبيقات الحقيقية:-
- كشف البريد العشوائي في البريد الإلكتروني
- تشخيص الأمراض في مجال الرعاية الصحية
- تحليل المشاعر في وسائل التواصل الاجتماعي
٢. خوارزميات الانحدار Regression Algorithms:
تُستخدم خوارزميات الانحدار لتوقع القيم الرقمية المستمرة استنادًا إلى البيانات المُدخلة. تنشئ هذه الخوارزميات علاقة بين المتغيرات المستقلة والمتغيرة التابعة لتقديم التوقعات. من الأمثلة على ذلك:
· الانحدار الخطي Linear Regression
· الانحدار البولينومي Polynomial Regression
· الانحدار الريجي Ridge Regression
· الانحدار لاسو Lasso Regression
التطبيقات الحقيقية:
- توقع سعر الأسهم
- تنبؤات إيرادات المبيعات
- تقدير أسعار العقارات
٣. خوارزميات التجميع Clustering Algorithms:
تُقسم خوارزميات التجميع النقاط المماثلة معًا استنادًا إلى سمات أو خصائص معينة دون وجود فئات محددة مسبقًا. تهدف إلى اكتشاف الأنماط أو الهياكل الأساسية في البيانات. من الأمثلة على ذلك:
· تجميع القيم المتوسطة
K-means
Clustering
· التجميع الهرمي Hierarchical
Clustering
· DBSCANالتجميع الكثافي القائم على المسافات مع الضوضاء
· نماذج الخلط الجاوسي Gaussian Mixture Models
التطبيقات الحقيقية:
- تقسيم العملاء للتسويق المستهدف
- تجميع الصور في مجال الرؤية الحاسوبية
- كشف الشذوذ في الأمان السيبراني
٤. خوارزميات تقليل الأبعاد Dimensionality Reduction Algorithms::
تهدف خوارزميات تقليل الأبعاد إلى تقليل عدد الميزات أو المتغيرات في مجموعة البيانات مع الحفاظ على المعلومات الأساسية. تساعد في تصور وفهم البيانات ذات الأبعاد العالية بشكل أكثر فعالية. من الأمثلة على ذلك:
· تحليل العناصر الرئيسية
Principal
Component Analysis (PCA)
· توزيع الجيران العشوائي الموزع (t-SNE) t-distributed Stochastic Neighbor Embedding
· تحليل التمييز الخطي LDA))
التطبيقات الحقيقية:
- تصور البيانات ذات الأبعاد العالية في مشاريع علم البيانات
- اختيار الميزات في نماذج التعلم الآلي
- ضغط البيانات لتخزين ومعالجة فعالة
الاستنتاج:
فهم الأنواع المختلفة من خوارزميات التعلم الآلي وتطبيقاتها أمر أساسي لتطوير
نماذج التعلم الآلي الفعّالة. كل نوع من الخوارزميات يخدم غرضًا محددًا ويمكن تطبيقه
على حل مجموعة واسعة من المشاكل الحقيقية عبر مختلف المجالات. في الدروس القادمة، سنستكشف
بعمق كل نوع من أنواع الخوارزميات، مستكشفين وظائفها ونقاط قوتها وضعفها.